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ABSTRACT
Compensation of the effect of strong solenoidal magnetic fields on particle beams is
studied. In e+e- Φ-factory the high detector magnetic fields are a strong perturbation of
the optics due to the low beam energy, and the induced coupling is carefully corrected for
luminosity optimization. A summary of different compensation methods is given, and the
scheme adopted for DAΦNE, the Rotating Frame Method (RFM), is described.

1.  Introduction

Electron-positron collider present designs are based in most cases on flat beams. The
control of coupling between horizontal and vertical planes is one of the conditions to
optimize luminosity, which is inversely proportional to the transverse section of the
beams at the interaction point (IP).
The solenoidal field of the detector around the IP is the strongest source of coupling.
Other coupling sources, distributed around the ring, such as quadrupole tilts, vertical
closed orbit in sextupoles, longitudinal fringing fields,.., will not be here considered.
A solenoid rotates the normal transverse modes by the angle θR defined by the integral of
the longitudinal magnetic field component along the closed orbit and inversely propor-
tional to the particle energy:
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Compensation of the coupling eliminates this rotation and transforms the normal modes in
horizontal and vertical ones.
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2.  Usual Compensation Methods

In 1978 Guignard developed the resonance method1,2): using Hamiltonian formalism and
treating the coupling fields as a perturbation of the uncoupled optics he showed that four
Skew Quadrupoles (SQ) on each side of a Detector Solenoid (SD) compensate the
solenoidal perturbation outside the insertion and at its center (IP). The name of the
method is due to the fact that the equations of motion are Fourier analysed and only terms
near the sum and/or the difference resonance are considered. Assuming a thin lens model
for the SQ, their strengths ki and phase locations satisfy 4 linear equations:
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Here the index 'i' refers to the SQ position, Q± is the nearest integer to Qx ± Qy. The ori-
gin of the abscissa z is at the IP. The approximation of considering only terms near the
resonance is the cause of the presence of global machine parameters in the equations.

The perturbative method3,4), performed without introducing the harmonics, obtained the
same result, except for the terms 2π Q Q Q z Rx y± −( )±  that disappeared.

Another method, which we call ‘four knobs, can find the SQ strengths just by imposing
four constraints directly on the Half-Interaction Region matrix. Let’s recall here few
general properties of a matrix. The linear Jacobian representing the transverse transfor-
mation along any section of a ring can be written as a 4x4 matrix:
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where A, B, C, D are 2x2 matrices. The section is uncoupled if ( , ' )x x  do not depend on
( , )y y′  and viceversa, that is if the two matrices B and C vanish, or the Jacobian is block
diagonal.



Using the simplecticity condition:
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1 0
, it is easy to show that this corresponds to 4 conditions, because the

equations
B = 0 (8)

assure that also the matrix C vanishes. Since a 4x4 simplectic matrix has 10 degrees of
freedom, once used four of them to decouple the matrix, 6 more parameters are available,
and they are relative to the two diagonal matrices A and D.

Finding four elements whose strengths make the matrix off diagonal elements to vanish,
is straightforward using any lattice design code, like MAD5) or NOLISY6), able to direct-
ly solve equations (8). The elements must introduce of course coupling terms, and can be
therefore tilted quadrupoles or solenoids.
This direct and quick method was used for the first time to calculate the 4 SQ strengths
for the L3 experiment at LEP7). The values came out to be very similar to those already
computed with the resonant method8).

3.  Rotating Frame Method (RFM)

The parameter which indicates the strength of the perturbation introduced by the magnetic
field is the transverse plane rotation angle linked to the longitudinal field integral (Eq. 1).
For LEP detectors this angle is about 2˚, while in DAΦNE9) it is about 45°, since the
longitudinal magnetic field in the detectors are of the same order of magnitude. The four
SQ scheme is not convenient in the DAΦNE IRs, essentially for a lack of space. In prin-
ciple another scheme can be used: the rotation introduced by the SD is neutralized by two
Compensating Solenoids (SC) placed on each side of the detector, with opposite magnetic
field, to make the total integral of Bz along the particle trajectory vanish. An important
inconvenient of this scheme is that the first low-β quadrupole has to be installed far away
from the IP, so increasing chromaticity and aperture requirements.
The Rotating Frame Method (RFM) allows to insert quadrupoles between SD and SC,
closer to the IP, without affecting the coupling correction. This method is based on the
general properties of the solenoidal matrix: the matrix MS representing a L long solenoid
with uniform field Bz can be written as the product of two matrices R and F which
commute:

M R F F RS = =( ) ( ) ( ) ( )θ θ θ θR R R R (9)



R represents a rotation by the angle θR:
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(I is the 2x2 unit matrix). Matrix F is block diagonal, equivalent to a quadrupole focusing
on both planes with the same strength:
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where A is the 2x2 matrix:
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A non uniform solenoid can be written as the product of small rectangular solenoids, each
one defined by a length ∆z and a rotation angle ∆θR. The total matrix can still be written
as the product of a focusing matrix and a rotating one:
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It is worth to point out that the rotation angle is the sum of the small rotations while the
focusing strength is obtained with the product of the focusing matrices.
Let's consider the half-IR matrix MH from the IP to the end of the SC:

M F R R F F FH C R R D C D= −( ) ( ) =θ θ (14)

Subscripts ‘C’ and ‘D’ stand respectively for Compensator and Detector. This matrix is
of course block diagonal.
Let's now add a quadrupole, represented by the matrix Q, between the detector and the
compensator, with two drifts L1 and L2 in between as in Fig. 1:
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Figure 1: Example of half Interaction Region Scheme



The matrix from the IP to the SC entrance will be:

M L Q L R FQ R D= ( )2 1 θ (15)

L1 and L2 are multiple of the unit matrix I, and commute with R:

M L Q R L FQ R D= ( )2 1θ (16)

If the quadrupole is tilted by the angle θ
R
 its matrix Q becomes:

Q R Q RR R R= ( ) −( )θ θ (17)

Using again the commutation property we get:
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and the half-IR matrix is:

M M M F R R L Q L F F L Q L FH C QR C R R D C D= = −( ) ( ) =θ θ 2 1 2 1 (19)

M
H
, product of block diagonal matrices, is block diagonal: a quadrupole placed in

between the detector and the compensator does not introduce coupling, provided it is
tilted by the same angle as the transverse coordinate frame. This holds of course for any
number of quadrupoles between the SD and the SC.

4.  Application of RFM to DAΦN E

The RFM has been adopted in the DAΦNE IRs design, for the compensation of the two
high field detector solenoids, KLOE and FINUDA, where the low-β quadrupoles are
installed inside the detectors (see Fig. 2 for a sketch of KLOE IR).

Q1 Q2 Q3
COMPENSATOR

SOLENOID

Figure 2: KLOE IR



Exact application of the RFM implies that each quadrupole immersed in the solenoidal
field should be continuously rotated as an helix. This is not pursuable because, apart from
technological difficulties, the rigidity of the scheme would ask for very strict tolerances
on detector fields and beam energy. Hence, quadrupoles are tilted as a whole by the angle
θR corresponding to their longitudinal midpoint. The half IR matrix obtained exhibits a
small residual coupling which can be corrected by applying Eqs. (8) and choosing as
knobs three independent supplementary rotations of the low-β quadrupoles, δθRi, and a
correction of the compensator field, resulting in a δθC. The example for the KLOE detec-
tor is shown in Table 1. Being the angle an odd function with respect to the IP, each
quadrupole on the left of the IP is rotated by the same and opposite angle of its symmetric
quadrupole on the right.

Table 1: KLOE IR

KLOE θR  (˚) δθ (˚)

Q1 +5.58 +0.29

Q2 +10.28 -0.02

Q3 +15.20 -0.27

Compensator -21.22 +0.34
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