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Abstract. PEP-II has been running for several years using drift-tube style longitudinal kickers.
They have functioned well at the design current in the HER and LER. Machine upgrade plans
for PEP-II have encouraged the analysis and design of cavity kickers for the longitudinal
feedback systems in PEP-II. The cavity kicker design is based on the use of an extremely low
Q°cavity, where the Q of the system is determined primarily by ridged waveguides coupling to
external loads. This kicker design has originally developed at LNF-INFN, and is attractive for
use at PEP- II to reduce the kicker impedance at frequencies outside the working bandwidth and
consequently reduce the strong beam-heating of the structure and the feedthroughs. The cavity-
style kicker is also better suited to external cooling, as it is without internal elements which must
be cooled through either radiation or conduction out through some path. The design options,
including the choice of operating frequency (9/4*RF vs. 13/4*RF), the kicker shunt impedance,
the number of external coupling ports (4 vs. 8) and the selection of the kicker bandwidth, are
briefly described and three different solutions are proposed. Results are presented estimating the
shunt impedance, bandwidth and HOM impedances via the use of the Ansoft HFSS code.

INTRODUCTION

Both the High Energy and Low Energy rings of PEP-II at SLAC utilize two-
element drift tube type kickers in the longitudinal feedback system [1]. They have
worked with success since machine commissioning and the machine is currently
running above the design luminosity. Future plans for PEP-II include operation at
higher currents, and we are considering the use of cavity type kickers for future use.
These cavity style kickers have limited impedance outside the operating bandwidth
(BW), and are potentially less subject to problems of beam-induced heating. This
paper reports on a design study for a cavity type kicker suitable for PEP-II require-
ments.
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GENERAL CONSIDERATIONS ABOUT THE KICKER DESIGN

The cavity kicker design is based on the idea of using the voltage seen by the beam
when it crosses a cavity gap, to provide the bunch with the proper longitudinal kick
needed to damp longitudinal coupled bunch motion. As the coupled bunch modes
cover a wide frequency range (up to 1/2 frp in case of every bucket filled), for good
efficiency ( and uniform gain across the full bandwidth of coupled-bunch modes) the
cavity has to be a broadband resonator, with a Q much lower than typical values for
conventional cavities. Since Q=2nf,U/P, where f;, is the central frequency of
resonance, U is the energy stored in the cavity volume and P is the total power
dissipated in the cavity walls and in external loads, the cavity Q can be lowered by
increasing the power losses.

The overdamped cavity kicker design uses strong coupling to external loads to set
the value of Q at the desired value (typically in the range from 4 to 10). In this
approach the external Q of the system is really defining the system bandwidth, and the
external loads are available to dissipate beam-induced power.

In detail, the kicker consists of a pill box cavity with a number of waveguides
(WGs) attached symmetrically on both cavity sides.

Figurel shows a drawing of the first cavity type kicker. It was designed for the
DAFNE ®-Factory at Frascati, Italy’[2].

o
FIGURE 1. Cut view of the DAFNE longitudinal feedback kicker.

Each WG is followed by a transition to a standard coaxial line via coaxial vacuum
insulators to facilitate the connection towards external devices (driving amplifiers and
dummy loads). Special ridged WGs are designed to lower the cut off frequency below
the frequencies of the fundamental mode band. By extending the transmission
response of the transitions up to the beam pipe cut off, effective damping of all HOMs
of the cavity can be obtained.



As the power losses are strongly dominated by the dissipation in the external loads,
driving half the ports of the structure in phase and connecting the remaining ports to
dissipative loads results in the cavity structure being perfectly matched at its central
frequency. However the power reflected towards amplifiers at the edge of the working
frequency band and the power released in the cavity by the beam for interaction with
the fundamental and HOM impedances require the use of circulators to protect the
driving amplifiers. This is in contrast to the existing drift-tube kickers, for which
absorbitive low-pass filters are used to protect the amplifiers from the beam-induced
HOM power, while the directivity of the drift-tube structure dissipates the majority of
the fundamental beam-induced power in the terminations of the drift-tube kicker, so
that the in-band power reflected back into the driving amplifiers is within the power
dissipation rating of the amplifiers.

THE CHOICE OF OPERATING FREQUENCY

We have explored two possible operating frequencies for the cavity kicker: 9/4
fre’= 1.071 GHz and 13/4 frr = 1.547 GHz (odd multiples of 1/4 frr allow the
minimization of beam-induced power and help provide uniform gain across the
operating band [3]. As part of this initial design study the preliminary design of a
cavity- kicker at 13/4 RF was performed to better estimate the likely shunt impedance
and HOM impedances, and better understand the trade-offs in choice of operating fre-
quency [4]. The higher frequency option presents some advantages, such as the
existing power amplifiers have more power output in this range of frequencies and the
HOM content of the cavity is reduced to only two dipoles because of the shift of the
other HOM resonant frequencies beyond beam pipe cut off. On the other hand, for the
9/4 frr solution, the increased ratio between cavity and beam pipe radii results in
higher R/Q. Consequently more shunt impedance is obtainable in spite of a reduction
of Q by a factor 13/9 for a fixed BW. Moreover, the current system is operating at 9/4
frr and there is no need to modify many back-end components. Finally the timing of
the system is less critical at lower frequencies.

Weighting pros and cons of each option, it has been decided to design the cavity
kicker at 9/4 fgr.

DESIGN OF THE THREE DIFFERENT PROPOSALS

For this basic design there are two important parameters available to specify the
overall design: the number of coupling ports and the coupling strengths, which
determine the BW of the kicker.

The system BW requirements are depending on the bucket filling patterns. In case
of by 2 filling, all the possible coupled bunch modes oscillate at frequencies contained
in a span of 120 MHz ( 476 MHz/4). With the rough assumption that the cavity
fundamental mode R/Q is constant when the cavity body profile is not changed, the
BW of the cavity kicker is inversely proportional to the maximum shunt impedance. In
other words it seems convenient to keep the BW as narrow as possible to maximize
the shunt impedance R. But this dependence is less sensitive at the edge of the BW,



so a BW larger than 120 MHz presents the advantage to have a better gain flatness
across the operating band and a better phase linearity of the system.

The narrower bandwidth structures have higher shunt impedance, and at first glance
one might assume that the voltage seen by the beam would be higher due to the higher
shunt impedance. However, there is an additional issue with the QPSK modulation
scheme, in which the QPSK carrier is resynchronized to the RF every 2.25 cycles,
so that the effective voltage seen by the beam for the various cases studied is roughly
identical [5].

In our initial studies we decided that a device having a BW of about 160 MHz
would be a good compromise between the opposite demands. The first two solutions
proposed have been designed with this BW value as target. A third possible design has
investigated the possibility to have a wider bandwidth cavity kicker with a BW closer
to the drift-tube design. The BW obtained for the third solution is 224 MHz.

For the number of coupling ports the two more feasible options are 4 or 8. Just 2
ports could not yield the required coupling for mode damping. Moreover the WGs,
transitions, feedthroughs, cables, circulators and loads must be designed to be able to
manage each one half the whole flowing power. More than 8 WGs cannot be allocated
on the cavity surface for lack of space, and a 6 port solution does not conveniently fit
the current scheme with 4 amplifiers mounted on 2 kickers.

We also considered the possibility to feed all ports instead of half of them,
obtaining a "2 kick voltage gain. In this approach ports on opposite sides of the cavity
gap must be powered 180 degrees out of phase, and the number of circulators must be
doubled as every port is connected to an amplifier. But as the circulator BW does not
extend up to higher frequency modes that could remain trapped, this idea has been
rejected.

An additional operation constraint has been considered. If we want to minimize the
necessary changes to the installed cable plant and high-powered terminations, the
alternative is between two 4 port kickers per beamline vs. a single 8 port structure.

Since, for a fixed BW, the shunt impedance does not depend on the number of
ports, the total kick voltage obtainable from a pair of 4 port devices results "2 times
the voltage given by a single 8 port kicker. On the other hand the power per
feedthrough is higher in case of a 4 port geometry and the contribution to beam
coupling impedance is also doubled. Moreover a wide BW is easier to achieve with an
increased number of WGs.

The first of the designs proposed has been designed with 8 ports, while the second
and the third options are 4 port structures.

The first option

As a first step we considered an 8 port structure. It was not obvious to arrange
4°WGs in the space of each cavity side wall, as the WGs cross section should be large
enough to keep the frequency cut off well below the operating frequencies.

Figure 2 shows the HFSS model (1/8 of the whole structure, for the geometric and
electromagnetic symmetry of fundamental mode) used as input geometry for
simulations.



FIGURE 2. HFSS input geometry.

In Fig. 3a the transmission response of the WG and transition to 7/8" coaxial
standard designed for this case is reported. To simplify the mechanical construction
the WG profile has been obtained as a slice (65 degrees wide) of a hollow cylinder,
which main radius is the same as the cavity radius. The ridge profile is also a cylinder
slice and it is truncated in proximity of the transition giving rise to a back cavity. The
length of this cavity can be tuned to center the frequency band of the transition
response.

Figure 3b shows the transmission coefficient S;; between the 4 input ports and the 4
output ports for the cavity fundamental mode. A little adjustment of central frequency
should be done since the estimated value has been 1.068 GHz. The 3dB BW is 153
MHz and the calculated shunt impedance peak value is about 950°Q.
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FIGURE 3. Transmission frequency response of kicker (b) and of its transition (a).



The HOM characterization has revealed 4 parasitic modes (2 dipoles and 2 mono-
poles) remain trapped into the cavity, but they are quite damped by external loading
through the coupling WGs. Table 1 summarizes what has been found in terms of fre-
quencies, Qs and impedances.

TABLE 1. Parameter of HOM characterization.

Mode Freq. |[GHz] Q R

TM o 1.5616 15 15.3kQ/m
TE 1.6819 541 60.3 kQ/m
TMy; 2.2203 12 70 Q
TMy 2.4266 35 50 Q

Various filling patterns have been considered to estimate the power released by the
beam on the kicker total impedance (both of the operating mode and of HOMs) [6].

In any case the power per port never reaches 1 kW, that seems a very conservative
value compared with the performances of feedthroughs, cables and loads. For this rea-
son, the following designs concentrate on kickers with only 4 ports.

The second option

The design feasibility of a kicker having the same 160 MHz BW but just half port
number of the previous one has been investigated. In this case, each single WG has to
provide a doubled loading of the fundamental mode. So the transverse dimensions of
the WG have been increased (the height is 4 mm more and the width is 100 degrees
instead of 65). The gap between the ridge and the WG upper wall has been increased
too (from 6 to 8 mm), to reduce the field intensity in this region. The capability to
sustain the flowing power results increased as well. Figure 4 shows the input geometry
for HFSS. WGs on opposite side of the cavity are 90 degrees rotated, to allow a better
coupling with high polarity modes (particularly dipoles). A quarter of geometry had to
be modeled in this case.

FIGURE 4. HFSS input geometry.



Figure 5 shows the transmission response of both the transition (left) and the kicker
between its input and output ports (right). The transition band extends up to the beam
pipe frequency cut off (approximately 2.6 GHz). The kicker BW is 165 MHz centered
at 1.071 GHz, while the shunt impedance peak value is now about 890 Q.

In Table 2 results of HOM characterization are listed.
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FIGURE 5. Transmission frequency response of kicker (b) and of its transition (a).

TABLE 2. Parameter of HOM characterization.

Mode Freq. |[GHz] Q R

TM; 1.5264 25 18.2 kQ/m

TE 1.6802 539 56 kQ/m

TMo1; 2.0568 12 61 Q

TMoao 2.3848 60 69 Q
The third option

Finally a 4 port device with a wider BW (comparable to the drift tube structure) has
been considered. The main difference respect to the design of the previous option is in
the WG cross section, that has been further on increased (the height and the width
being now respectively 41 mm and 120 degrees). Simulation results for the transition
and the kicker frequency response are shown in Fig. 6. Due to the WG larger size, its
transmission response presents a notch around 2.6 GHz. However, the HOM damping
is not compromised as the higher frequency of the trapped HOMs is about 2.4 GHz.

The 3dB kicker BW is 224 MHz with a shunt impedance of 626 Q estimated at the
center frequency (1.071 GHz). Table 3 summarizes HOM parameters calculated for
this structure.

TABLE 3. Parameter of HOM characterization.

Mode Freq. [GHz] Q R
T 1.5151 22 16.7 kQ/m
TE 1 1.7114 210 19.2 kQ/m
TMo; 2.0507 13 65 Q

TMOZO

24117 116 76 Q
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FIGURE 6. Transmission frequency response of kicker (b) and of its transition (a).

SUMMARY

The design of a cavity kicker involves many details of electrical, thermal and
vacuum requirements. Our group is proceeding with the detailed design of the
wideband 4 port structure (third option). Ongoing efforts are centered on fine
optimization of the cavity bandwidth and shunt impedance, and the consideration of
the heating of the structure and feedthroughs. A study is underway to consider the
possibility of multipactor effects in the structure to help select the cavity material and
surface finish’[7].We plan on completing the final design and moving to the
fabrication phase in summer 2002.
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